Sains Malaysiana 52(10)(2023): 2803-2813
http://doi.org/10.17576/jsm-2023-5210-06
Effect of Acid
and Oxidation Degradation of Gum Arabic on the Growth of Lactobacillus Strains
(Kesan Degradasi Asid dan Pengoksidaan Gam Arab terhadap Pertumbuhan Strain Lactobacillus)
HAMAD MOHAMAD SALAH HAMAD AHALIL1,
SHAHRUL RAZID SARBINI2, SAHILAH ABDUL MUTALIB3,4, AMINAH
ABDULLAH3 & MOHAMAD YUSOF MASKAT3,4,*
1Faculty of Agriculture, University of Benghazi, Benghazi, Libya
2Department of Crop Science, Faculty of Agricultural and Food Sciences, Universiti Putra Malaysia Bintulu Campus, Jalan Nyabau, 97008 Bintulu,
Sarawak, Malaysia
3Department of Food Sciences, Faculty Science and Technology, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor, Malaysia
4Innovation Center for Confectionery Technology,
Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
Received: 2 December
2022/Accepted: 6 September 2023
Abstract
Gum arabic consisted of
polysaccharides that has the potential to be converted into oligosaccharides
through degradation. Thus, this study aimed to determine the effect of gum arabic degradation on the growth of two Lactobacillus probiotic strains. Two
types of gum arabic (Acacia senegaland Acacia seyal) were subjected to trifluoroacetic acid (TFA) and oxidation degradation. TFA
degradation produced a significantly higher (p<0.05) degree of degradation
for A. senegal (67.6%) and A. seyal (62.87%) compared to oxidation method for A. senegal (36.49%) and A. seyal (39.37%). Thus, TFA degradation
was selected as the degradation method. The TFA treated gum arabic was used as growth medium for two types of probiotic strains namely, Lactobacillus plantarum and Lactobacillus reuteri.
Results showed that OD of TFA treated
gums from A. senegal(1.390) and A. seyal (1.330) was significantly higher (p<0.05) compared to untreated
samples innoculated with Lactobacillus plantarum. Similarly, CDM of TFA treated gums innoculated with Lactobacillus plantarum for A. senegal(1.150 g/L) and A. seyal(1.050 g/L) was
also significantly higher (p<0.05)
compared to untreated samples. Using treated
gum, the growth (OD and CDM) of Lactobacillus reuteri was significantly
higher (p<0.05) compared to untreated gum. Prebiotic Index (Ipreb) of both types of treated gum arabic was significantly improved (p<0.05) compared to
untreated samples. In conclusion, treating
gum arabic from both Acacia senegaland Acacia seyal with TFA produced samples which were more favourable for the growth of Lactobacillus plantarum and Lactobacillus reuteri strains with significantly
increased (p<0.05) Ipreb.
Keywords: Acacia senegal; Acacia seyal; Lactobacillus; prebiotic; probiotic
Abstrak
Gam arab terdiri daripada
polisakarida yang berpotensi untuk ditukar menjadi oligosakarida melalui
degradasi. Justeru, kajian ini bertujuan untuk menentukan kesan degradasi gam
arab terhadap pertumbuhan dua strain probiotik Lactobacillus. Dua jenis gam arab (Acacia senegal dan Acacia
seyal) telah melalui proses degradasi menggunakan asid trifluoroasetik
(TFA) dan degradasi pengoksidaan. Degradasi TFA menghasilkan darjah degradasi
yang lebih tinggi secara signifikan (p<0.05) untuk A. senegal (67.6%) dan A.
seyal (62.87%) berbanding kaedah pengoksidaan bagi A. senegal (36.49%) dan A.
seyal (39.37%). Justeru, degradasi TFA telah dipilih sebagai kaedah
degradasi. Gam arab terawat TFA digunakan sebagai media pertumbuhan untuk dua
strain probiotik iaitu, Lactobacillus
plantarum dan Lactobacillus reuteri.
Keputusan menunjukkan OD gam arab terawat menggunakan TFA daripada A. senegal(1.390) danA. seyal(1.330) adalah lebih tinggi secara signifikan (p<0.05)
berbanding sampel tidak terawat yang diinokulasi dengan Lactobacillus plantarum. Begitu juga, CDM untuk gam terawat
menggunakan TFA yang diinokulasi dengan Lactobacillus
plantarum untuk A. senegal(1.150 g/L) danA. seyal(1.050 g/L) juga adalah lebih tinggi secara signifikan (p<0.05) berbanding sampel tidak terawat. Apabila menggunakan gam
terawat, pertumbuhan (OD dan CDM) Lactobacillus reuteri adalah lebih tinggi secara signifikan (p<0.05) berbanding sampel tidak terawat. Indeks Prebiotik (Ipreb) bagi kedua-dua gam arab terawat meningkat secara signifikan (p<0.05) berbanding sampel tidak terawat. Kesimpulannya, merawat gam arab
daripada kedua-dua Acacia senegal dan Acacia seyal menggunakan TFA
menghasilkan sampel yang lebih sesuai untuk pertumbuhan strain Lactobacillus plantarum dan Lactobacillus reuteri dengan peningkatan Ipreb yang signifikan (p<0.05).
Kata kunci: Acacia senegal; Acacia seyal; Lactobacillus; prebiotik; probiotik
REFERENCES
Ahallil, H., Maskat, M.Y., Abdullah,
A. & Sarbini, S.R. 2020. The effect of Acacia senegal as potential
prebiotic on obese gut microbiota. Food
Research 4(3): 814-822.
Amid, B.T., Mirhosseini, H. & Kostadinović, S. 2012.
Chemical composition and molecular structure of polysaccharide-protein
biopolymer from Durio zibethinus seed: Extraction and purification
process. Chemistry Central Journal 6(1): 117.
Belorkar, S.A. & Gupta, A.K. 2016. Oligosaccharides: a
boon from nature’s desk. AMB Express 6(1): 82.
Bouaziz, F., Koubaa, M., Ben Jeddou, K., Kallel, F., Boisset
Helbert, C., Khelfa, A., Ellouz Ghorbel, R. & Ellouz Chaabouni, S. 2016.
Water-soluble polysaccharides and hemicelluloses from almond gum: Functional
and prebiotic properties. International Journal of Biological Macromolecules 93(3): 359-368.
Chundakkattumalayil, H.C., Kumar, S., Narayanan, R.
& Raghavan, K.T. 2019. Role of L. plantarum KC519413 as probiotic and acacia gum as prebiotic in gastrointestinal tract
strengthening. Microorganisms 7(12):
659.
Dai, J., Wu, Y., Chen, S.W., Zhu, S., Yin, H.P., Wang, M.
& Tang, J. 2010. Sugar compositional determination of polysaccharides from Dunaliella
salina by modified RP-HPLC method of precolumn derivatization with
1-phenyl-3-methyl-5-pyrazolone. Carbohydrate Polymers 82(3): 629-635.
de Moura, F.A., Macagnan, F.T. & da Silva, L.P. 2015.
Oligosaccharide production by hydrolysis of polysaccharides: A review. International
Journal of Food Science and Technology 50(2): 275-281.
Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A. &
Smith, F. 1956. Colorimetric method of determination of sugars and related
substances. Analytical Chemistry 28:
350-356.
Friedman, M. 2002. Food browning and its prevention. Journal
of Agricultural and Food Chemistry 44(3): 631-653.
Ganzle, M.G. & Follador, R. 2012. Metabolism of
oligossaccharides and starch in lactobacilli: A review. Frontier in Microbiology 3: 340.
Gómez, B., Gullón, B., Yáñez, R., Schols, H. & Alonso,
J.L. 2016. Prebiotic potential of pectins and pectic oligosaccharides derived
from lemon peel wastes and sugar beet pulp: A comparative evaluation. Journal
of Functional Foods 20(3): 108-121.
Gopal, P.K., Sullivan, P.A. & Smart, J.B. 2001.
Utilisation of galacto-oligosaccharides as selective substrates for growth by
lactic acid bacteria including Bifidobacterium lactis DR10 and Lactobacillus
rhamnosus DR20. International Dairy Journal 11(1-2): 19-25.
Hammad, A., Aminah, A., Maskat, M.Y.
& Shahrul, R.S. 2018. In vitro fermentation of Acacia senegal by fecal microbiota from lean donors to stimulate the growth of probiotic. Current Trends in Biotechnology and Pharmacy 12(1): 96-102.
Kaplan, H. & Hutkins, R.W. 2000. Fermentation of
fructooligosaccharides by lactic acid bacteria and bifidobacteria. Applied
and Environmental Microbiology 66(6): 2682-2684.
Kiiru, S.N., Mahungu, S.M. & Omwamba, M. 2018.
Preparation and analysis of goat milk mozzarella cheese containing soluble
fiber from Acacia senegal var. kerensis. African Journal of Food Science 12(3): 46-53.
Kumar, K., Rajulapati, V. & Goyal, A. 2020. In vitro prebiotic potential, digestibility and biocompatibility properties of
laminari-oligosaccharides produced from curdlan by β-1,3-endoglucanase
from Clostridium thermocellum. 3
Biotech 10(6): 241.
Liang, S., Liao, W., Ma, X., Li, X. & Wang, Y. 2017. H2O2 oxidative preparation, characterization and antiradical activity of a novel
oligosaccharide derived from flaxseed gum. Food Chemistry 230(3):
135-144.
Ling, J.W.A., Chang, L.S., Babji,
A.S. & Lim, S.J. 2020. Recovery of value-added glycopeptides from Edible
Birds Nest (EBN) co-products: Enzymatic hydrolysis, physicochemical
characteristics and bioactivity Journal of the Science of Food and
Agriculture 100(13): 4714-4722.
Mohd, N.H., Maskat, M.Y., Mackeen,
M.M., Zaini, N.A.M., Sahilah, A.M. & Sage, E.E. 2022. Growth of probiotic Lactobacillus rhamnosus GR-1 using
saccharified oil palm mesocarp fiber as affected by saccharification time and
fermentation time. Food Research 6(1): 132-138.
Nestec, S.A. 2016. World Intellectual Property
Organization. WO 2016/066763 A1.
Nurul, H.M., Rizafizah, O., Mukram,
M.M. & Maskat, M.Y. 2021. Kesan masa hidrolisis enzimatik terhdap
penghasilan oligosakarida daripada gentian mesokarpa buah kelapa sawit. Sains Malaysiana 50(6): 1673-1683.
Osman, A.A., Osman, M.H.A.S.M.E. & Hassan, E.A. 2015.
Fractionation and physicochemical studies of Acacia senegal. Gums 4(12): 1540-1545.
Palframan, R., Gibson, G.R. &
Rastall, R.A. 2003. Development of a quantitative tool for the comparison of
the prebiotic effect of dietary oligosaccharides. Letters in Applied
Microbiology 37(4): 281-284.
Pennacchia, C., Vaughan, E.E. & Villani, F. 2006.
Potential probiotic Lactobacillus strains from fermented sausages:
Further investigations on their probiotic properties. Meat Science 73(1): 90-101.
Rawi, M.H., Aminah, A., Ismail, A. & Sarbini, S.R. 2021.
Manipulation of gut microbiota using acacia gum polysaccharide. ACS Omega 6(28): 17782-17797.
Renard, D., Lavenant-Gourgeon, L., Lapp, A., Nigen, M. &
Sanchez, C. 2014. Enzymatic hydrolysis studies of arabinogalactan-protein
structure from Acacia gum: The self-similarity hypothesis of assembly form a
common building block. Carbohydrate
Polymers 112: 648-661.
Salazar, N., Prieto, A., Leal, J.A., Mayo, B., Bada-Gancedo,
J.C., de los Reyes-Gavilán, C.G. & Ruas-Madiedo, P. 2009. Production of
exopolysaccharides by Lactobacillus and Bifidobacterium strains
of human origin, and metabolic activity of the producing bacteria in milk. Journal
of Dairy Science 92(9): 4158-4168.
Saminathan, M., Sieo, C.C., Kalavathy, R., Abdullah, N. &
Ho, Y.W. 2011. Effect of prebiotic oligosaccharides on growth of Lactobacillus
strains used as a probiotic for chickens. African Journal of Microbiology
Research 5(1): 57-64.
Saqib, A.A.N. & Whitney, P.J. 2011. Differential
behaviour of the dinitrosalicylic acid (DNS) reagent towards mono- and
di-saccharide sugars. Biomass and Bioenergy 35(11): 4748-4750.
Sasaki,
Y., Komeno, M., Ishiwata, A., Horigome,
A., Odamaki, T., Xiao, J.Z., Tanaka, K., Ito, Y., Kitahara, K., Ashida, H. &
Fujita, K. 2022. Mechanism of cooperative degradation of gum arabic arabinogalactan protein by Bifidobacterium longum surface enzymes. Genetics
and Molecular Biology 88(6): e0218721.
Saulnier, D.M.A., Molenaar, D., De Vos, W.M., Gibson, G.R.
& Kolida, S. 2007. Identification of prebiotic fructooligosaccharide
metabolism in Lactobacillus plantarum WCFS1 through microarrays. Applied
and Environmental Microbiology 73(6): 1753-1765.
Schwab, C., Voel, R. & Ganzle, M.G. 2007. Influence of
oligosacchrides on the viability and membrane properties of Lactobacillus
reuteri TMW1.106 during freeze-drying. Cryobiology 55(2): 108-114.
Shoaib, M., Shehzad, A., Omar, M., Rakha, A., Raza, H.,
Sharif, H.R., Shakeel, A., Ansari, A. & Niazi, S. 2016. Inulin: Properties,
health benefits and food applications. Carbohydrate Polymers 147(4):
444-454.
Wood, T.M. & Bhat, K.M. 1988. Methods for measuring
cellulase activities. Methods in Enzymology 160(3): 87-112.
Yan, X., Wang, W., Liu, M. & Zhao, Z. 2018. Preparation
of oligosaccharides by degradation of polysaccharides from Chinese jujube and
its biological activity. Journal of Polymer Science 23(1): 225-231.
Yoshimi, Y., Yaguchi, K., Kaneko, S., Tsumuraya, Y. &
Kotake, T. 2017. Properties of two fungal endo-β-1,3-galactanases and
their synergistic action with an exo-β-1,3-galactanase in degrading
arabinogalactan-proteins. Carbohydrate Research 11(3): 453-454.
Zhang, S., Hu, H., Wang, L., Liu, F. & Pan, S. 2018.
Preparation and prebiotic potential of pectin oligosaccharides obtained from
citrus peel pectin. Food Chemistry 244(1): 232-237.
*Corresponding author; email: yusofm@ukm.edu.my
|